Evaluation of the impact of bioclimatic variables on consumption: Case study of the Aguas de La Habana sector.

Authors

  • Mario Ramos Joseph Empresa Aguas de La Habana, Fomento y Recreo, Palatino, Cerro, La Habana, Cuba
  • Reniel Carvajal Alfonso Empresa Aguas de La Habana, Fomento y Recreo, Palatino, Cerro, La Habana, Cuba
  • Alcides J. León Méndez Universidad Tecnológica de La Habana, CUJAE, calle 114, Marianao, La Habana, Cuba
  • Raisa Socorro Llanes Universidad Tecnológica de La Habana, CUJAE, calle 114, Marianao, La Habana, Cuba

Keywords:

water demand, ensemble, prediction horizon, time series, bioclimatic variables

Abstract

Every day it increases the necessity to negotiate in a more efficient way the natural resources, among these the water stays as primordial element, for its importance for the health, activity and development humans. To guarantee the demand to short, medium and I release term he/she has become a great challenge for investigators and agents of water in the whole planet. In this work a model of temporary series is used to evaluate the impact of the variable bioclimatic in the consumption. This model is applied to different horizons of historical consumption in a sector operated by Waters of Havana. It is proven the novel effect that you/they have these variable bioclimatic in the prediction of the domestic demand. The obtained results contribute securities of r2 squared that oscillate between 0,69 and 0,79.

Downloads

Download data is not yet available.

References

Alshaikhli M., Aqeel S., Valdeolmillos N., Fathima F. and Choe P. (2021). "A Multi-Linear Regression Model to Predict the Factors Affecting Water Consumption in Qatar." IOP Conf. Series Earth Environ. Sci 691 012004. Doi 10.1088/1755-1315/691/1/012004.

Arellano A. y Peña D. (2020). "Modelos de regresión lineal para predecir el consumo de agua potable". NOVASINERGIA, ISSN 2631-2654, 3(1), 27-36. https://doi.org/10.37135/ns.01.05.03.

De Souza G., Azevedo G., Marcelo C. and Marcelo L. (2019) "Predicting water demand: a review of the methods employed and future possibilities”. IWA Publishing Water Supply | 19.8.

Hao W., Cominola A., Castelletti A. (2022). "Comparing predictive machine learning Models for Short- and Long-Term Urban Water Demand Forecasting in Milan, Italy." IFAC On Line: 55-33 (2022) 92-98.

Pomares J. (2022) “Principales factores climáticos que afectan la demanda doméstica”. Tesis de diploma, Instituto Superior Politécnico José Antonio Echeverría, La Habana. Cuba.

Ramos J.M., León A.J., Socorro R., Carvajal R. and González C. M. (2023) “Climatic factors that impact the consumption patterns tame of water. A case of study”. Progress in Artificial Intelligence and Pattern Recognition. 8th International Congress on Artificial Intelligence and Pattern Recognition, pages 35-47. IWAIPR 2023, Varadero, Cuba, September 27–29, 2023, Proceedings. https://link.springer.com/book/10.1007/978-3-031-49552-6-4

Published

2024-05-15

How to Cite

Ramos Joseph, M., Carvajal Alfonso, R., León Méndez, A. J., & Socorro Llanes, R. (2024). Evaluation of the impact of bioclimatic variables on consumption: Case study of the Aguas de La Habana sector. Ingeniería Hidráulica Y Ambiental, 45(1), 64–76. Retrieved from https://riha.cujae.edu.cu/index.php/riha/article/view/654

Most read articles by the same author(s)

1 2 > >>