Evaluation of some unified expressions for the Darcy-Weisbach friction factor

Authors

  • Juan Camilo Castro Velásquez Departamento de Ingeniería Informática, Escuela Colombiana de Ingeniería Julio Garavito.
  • Sebastián Pérez Ocampo Facultad de Ingeniería Civil, Universidad Cooperativa de Colombia.
  • Juan David Rincón Vanegas Departamento de Ingeniería Civil y Agrícola, Universidad Nacional de Colombia.

Keywords:

Darcy-Weisbach friction factor, fluid mechanics, laminar flow, pipe hydraulics, turbulent flow

Abstract

In the design of pipelines for the transport of fluids, different equations are used to determine the friction factor in laminar and turbulent regimes. However, it is possible that there are important variations of the different parameters involved in the physical phenomenon, which significantly change the laminar flow regime to turbulent or vice versa. Therefore, it is practical to have unified expressions that are applicable regardless of the flow pattern. In this order of ideas, over time some researchers have proposed formulations for this purpose, however, it is absolutely necessary to validate, especially the modern equations, in order to establish the accuracy and, therefore, the reliability of the results that each expression provides.

Downloads

Download data is not yet available.

References

Avci A. and Karagoz I. (2009). “A novel explicit equation for friction factor in smooth and rough pipes”, Journal of Fluids Engineering, vol. 131, no. 6, pp. 1-4, ISSN 0098-2202, Turquía.

Avci A. and Karagoz I. (2019). “A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes”, European Journal of Mechanics, vol. B, no. 78, pp. 182-187, ISSN 0997-7546, Turquía.

Brkić D. (2011). “Review of explicit approximations to the Colebrook relation for flow friction”, Journal of Petroleum Science and Engineering, vol. 77, no. 1, pp. 34-48, ISSN 0920-4105, Serbia.

Brkić D. and Praks P. (2018). “Unified friction formulation from laminar to fully rough turbulent flow”, Applied Sciences, vol. 8, no. 11, pp. 1-13, ISSN 2076-3417, Serbia.

Brkić D. and Praks P. (2020). “Review of new flow friction equations: Constructing Colebrook’s explicit correlations accurately”, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 36, no. 1, pp. 1-8, ISSN 0213-1315, Serbia.

Brkić D. and Praks P. (2022). “Approximate flow friction factor: Estimation of the accuracy using Sobol’s Quasi-random sampling”, Axioms, vol. 11, no. 36, pp. 1-8, ISSN 2075-1680, Serbia.

Cheng N. (2008). “Formulas for friction factor in transitional regimes”, Journal of Hydraulic Engineering, vol. 134, no. 9, pp. 1357-1362, ISSN 1943-7900, Singapur.

Chernikin A. and Chernikin B. (2012). “Oбобщенная формула для расчета коэффициента гидравлического сопротивления магистральных трубопроводов для светлых нефтепродуктов и маловязких нефтей (En ruso)”, наука и технологии трубопроводного транспорта нефти и нефтепродуктов, vol. 8, no. 4, pp. 64-66, ISSN 2541-9595, Rusia.

Churchill W. (1973). “Empirical expressions for the shear stress in turbulent flow in commercial pipe”, AIChE Journal, vol. 19, no 2, pp. 375-376, ISSN 0001-1541, Universidad de Pensilvania.

Churchill W. (1977). “Friction-factor equation spans all fluid-flow regimes”, Chemical Engineering, vol. 84, no. 24, pp. 91-92, ISSN 1873-3212, New York. EEUU.

Colebrook C. and White C. (1939). “Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws”, Journal of the Institution of Civil Engineers, vol. 11, no. 4, pp. 133-156, ISSN 0368-2455.

Díaz-Damacillo L. and Plascencia G. (2019). “A new six parameter model to estimate the friction factor”, AIChE Journal, vol. 65, no. 4, pp. 1144-1148, ISSN 0001-154, México.

Díaz-Damacillo L. Plascencia G. and Robles-Agudo M. (2020). “On the estimation of the friction factor: a review of recent approaches”, SN Applied Sciences, vol. 2, no. 163, pp. 1-13, ISSN 3004-9261, México.

Milošević M. Brkić D. Praks P. Litričin D. and Stajić Z. (2022). “Hydraulic losses in systems of conduits with flow from laminar to fully turbulent: A new symbolic regression formulation”, Axioms, vol. 11, no. 5, pp. 1-11, ISSN 2075-1680.

Moody L. (1944). “Friction factors for pipe flow”, Journal of Fluids Engineering, vol. 66, no. 8, pp. 671-678, ISSN 0098-2202.

Nikuradse J. (1950). “Laws of flow in rough pipes”, National Advisory Committee for Aeronautics, Washington, extraído de: https://ntrs.nasa.gov/citations/19930093938, en enero 2024.

Saldarriaga J. (2016). “Hidráulica de tuberías”, Editorial Alfaomega, tercera edición, ISBN 978-958-682-971-7, Bogotá, Colombia.

Swamee P. (1993). “Design of a submarine oil pipeline”. Journal of Transportation Engineering, vol. 119, no. 1, pp. 159-170, ISSN 2473-2893.

Swamee P. and Jain A. (1976). “Explicit equations for pipe flow problems”, Journal of the Hydraulics Division, vol. 102, no. 5, pp. 657-664, ISSN 1943-7900.

The SciPy Community. (2023). “Scipy.stats.qmc.Sobol”, extraído de: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.qmc.Sobol.html, en enero 2024.

Published

2024-05-06

How to Cite

Castro Velásquez, J. C., Pérez Ocampo, S., & Rincón Vanegas, J. D. (2024). Evaluation of some unified expressions for the Darcy-Weisbach friction factor. Ingeniería Hidráulica Y Ambiental, 45(1), 54–63. Retrieved from https://riha.cujae.edu.cu/index.php/riha/article/view/653