Effects of the magnetic field on the total hardness, specific heat and boiling point of water

Authors

  • Nuria Vaillant López Centro de Investigaciones Hidráulicas (CIH), Universidad Tecnológica de la Habana José Antonio Echeverría (Cujae)
  • Gabriela Carreras Fernández Centro de Investigaciones Hidráulicas (CIH), Universidad Tecnológica de la Habana José Antonio Echeverría (Cujae)
  • Guillermo Ribeaux Kindelán Centro de Electromagnetismo Aplicado (CNEA), Universidad de Oriente

Keywords:

heat conservation, total hardness, magnetic memory, boiling point, magnetic treatment

Abstract

To examine the effect of the magnetic treatment (MT), in the total hardness (TH), point of boil (PB) and capacity of conservation of heat (CC) of the water of the source ¨Cosculluela¨, of Havana, the samples were subjected to a magnetic field (MC) generated by permanent imams, NOVAMAG marks, for three values of intensity of MC (325 mT, 268 mT y 2 17 mT), speed of circulation of 0,073 m/s, three times of exhibition (1,09s, 2.18s, 3.27s) and ambient temperature (22 ±1°C). Variations were obtained in the TH, the PB and the CC of the samples with MT. As for the magnetic memory, in the periods of 48h and 72h they stayed the effects caused by the MC for the Pb and the CC but didn't for the TH.

Downloads

Download data is not yet available.

References

Acea C.M. (2005). “Efecto del tratamiento magnético sobre la temperatura de ebullición”, Revista Ingeniería Energética, Vol. XXVI, No. 1, pp 3-5. E-ISSN: 1815-5901.

APHA (1992). Standard Methods for the Examination of Water and Wastewater. 18th Edition, American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF), Washington DC. USA.

Coey J.M.D. and Cass, S. (2000). “Magnetic Water Treatment”. Journal of Magnetism and Magnetic materials. 209 (1-3): pp. 71-74. ISSN 0304-8853, https://doi.org/10.1016/S0304-8853 (99)00648-4.

Coey J.M.D. (2012). “Magnetic water treatment – how might it work?” Philosophical Magazine Vol. 92, No. 31, (1) pp 3857–3865 http://dx.doi.org/10.1080/14786435.2012.685968.

Gehr R., Zhai Z.A., Finch J.A. and Ram S. (1995). “Reduction of soluble mineral concentration in CaSO4, saturated water using a magnetic field”. Pergamon, Wat. Res. Vol. 29 (3), pp 933 – 940. DOI: 10.1016/0043-1354(94)00214-r.

Lasa V. (2008). “La experiencia en La Habana”. INRH. En EXPOZARAGOZA, Agua y ciudad. https://www.zaragoza.es.

NC ISO 6058:2009 (2009). “Calidad Del Agua — Determinación Del Contenido De Calcio — Método Por Valoración Con EDTA”. La Habana, Cuba.

NC ISO 6059:2010 (2010). “Calidad Del Agua — Determinación De La Suma De Calcio Y Magnesio — Método Por Valoración Con EDTA”. La Habana, Cuba.

Vera R. (2018). “Evaluación de tres tipos de tuberías usadas en tratamientos magnéticos para la reducción de concentraciones de calcio y magnesio en aguas duras” (Tesis de pregrado). Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta. Ecuador.

Vaillant N. (2019). “Agua, dureza y magnetismo”, 54 pp., Cuba, La Habana, Centro de Investigaciones Hidráulicas (CIH), Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE, (monografía), ISBN: 978-959-261-601-1.

Wang Y., Wei H. and Li Z. (2018). “Effect of magnetic field on the physical properties of water” in Results in Physics, Vol. 8. pp. 262-267. ISSN 2211-3797 https://doi.org/10.1016/j.rinp.2017.12.022: www.journals.elsevier.com/results-in-physics.

Zhou K., Lu G., Zhou Q.C., Song J.H., Jiang S.T. and Xia H. (2000). “Monte Carlo simulation of liquid water in a magnetic field”, Journal of Applied Physics, Vol. 88, pp. 1802-1805. DOI:10.1063/1.1305324.

Published

2022-12-11

How to Cite

Vaillant López , N. ., Carreras Fernández, G. ., & Ribeaux Kindelán, G. . (2022). Effects of the magnetic field on the total hardness, specific heat and boiling point of water. Ingeniería Hidráulica Y Ambiental, 43(4), 76–87. Retrieved from https://riha.cujae.edu.cu/index.php/riha/article/view/611