State of the art of Machine Learning algorithms for burst detection
Keywords:
Machine learning, hydraulics networks, neural networks, burstAbstract
In this work, a review of the existing paradigms and the most used techniques in the burst detection is carried out, delving into those that use Machine Learning as the main tool for data interpretation. The relationship between detection effectiveness and the parameters of each algorithm, as well as the level of processing required, are compared. For Support Vector Machine, the effectiveness in burst detection is exponentially. The exposed decision tree increases its precision the more information about the state of the network it has. The artificial neural network demonstrates a detection effectiveness at the level of the rest of the algorithms treated, maintaining the commitment to the processing level.
Downloads
References
Alves Coelho J., Glória A. and Sebastião P. (2020). "Precise Water Leak Detection Using Machine Learning and Real-Time Sensor Data". IoT, 1(2), Article 2. ISSN 474-493.
Arredondo D. J., Gil W. J. y Mora J. J. (2017). "Metodología para la selección de atributos y condiciones operativas para la localización de fallas basada en la máquina de soporte vectorial". Tecnura, 21(51), 15-26. ISSN 0123-921.
Bohorquez J., Simpson A. R., Lamber, M. F. and Alexander B. (2021). "Merging Fluid Transient Waves and Artificial Neural Networks for Burst Detection and Identification in Pipelines". Journal of Water Resources Planning and Management, 147(1), 04020097. ISSN 1943-5452.
Hernández G. (2014). "Implementación numérica de redes neuronales artificiales para el análisis de grietas en placas". Tesis de Maestría, Escuela Superior de Ingeniería Mecánica y Eléctrica, México D.F.
Huang P., Zhu N., Hou D., Chen J., Xiao Y., Yu J., Zhang G. and Zhang, H. (2018). "Real-Time Burst Detection in District Metering Areas in Water Distribution System Based on Patterns of Water Demand with Supervised Learning". Water, 10(12), Article 12. ISSN 2073-4441.
Liu Y., Ma X., Li Y., Tie Y., Zhang Y. and Gao J. (2019). "Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks". Sensors, 19(23), Article 23. ISSN 1424-8220.
Mounce S. R., Mounce R. B. and Boxall J. B. (2011). "Novelty detection for time series data analysis in water distribution systems using support vector machines". Journal of hydroinformatics, 13(4), 672-686. ISSN 1464-7141.
Rodríguez C. F., Montes E. M. y López R. R. (2021). "Generación de árboles de decisión usando un algoritmo inspirado en la Física". Tesis de Maestría en Computación Aplicada, Laboratorio Nacional de Informática Avanzada, México D.F.
Saravanan R. and Sujatha P. (2018). A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 945-949. ISBN 978-1-5386-2843-0.
Srirangarajan S., Allen M., Preis A., Iqbal M., Lim H. B. and Whittle A. J. (2013). "Wavelet-based Burst Event Detection and Localization in Water Distribution Systems". Journal of Signal Processing Systems, 72(1), 1-16. ISSN 1939-8115
Trutié-Carrero E., Valdés-Santiago D., León-Mecías Á. y Ramírez-Beltrán J. (2018). "Detección y Localización de Ruptura Súbita mediante Transformada Wavelet Discreta y Correlación Cruzada". Revista Iberoamericana de Automática e Informática Industrial, 15(2), Article 2. ISSN 1697-7912
Van Jaarsveldt C., Peters G. W., Ames M. and Chantler M. (2023). "Tutorial on Empirical Mode Decomposition: Basis Decomposition and Frequency Adaptive Graduation in Non-Stationary Time Series". IEEE Access. ISSN 2169-3536
Zaman D., Tiwari M. K., Gupta A. K. and Sen D. (2020). "A review of leakage detection strategies for pressurised pipeline in steady-state". Engineering Failure Analysis, 109, 104264. ISSN 1350-6307. https://doi.org/10.1016/j.engfailanal.2019.104264
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish in this journal agree to the following terms:
a. The authors retain all copyrights and grant the journal the right to first publish the work as licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License that allows others to share the work with an acknowledgment of authorship. work and the initial publication in this journal.
b. Authors may separately establish additional agreements with the Editorial Committee for the publication of their work or a version of it in another journal, with an acknowledgment of its initial publication in this journal.