State of the art of Machine Learning algorithms for burst detection

Authors

  • Jaime Ernesto Chiang Cruz Centro de Investigaciones Hidráulicas (CIH), Universidad Tecnológica de la Habana José Antonio Echeverría (Cujae)
  • Iliover Vega González CIME, Universidad Tecnológica de La Habana José Antonio Echeverría
  • Jorge Ramírez Beltrán Centro de Investigaciones Hidráulicas (CIH), Universidad Tecnológica de la Habana José Antonio Echeverría (Cujae)

Keywords:

Machine learning, hydraulics networks, neural networks, burst

Abstract

In this work, a review of the existing paradigms and the most used techniques in the burst detection is carried out, delving into those that use Machine Learning as the main tool for data interpretation. The relationship between detection effectiveness and the parameters of each algorithm, as well as the level of processing required, are compared. For Support Vector Machine, the effectiveness in burst detection is exponentially. The exposed decision tree increases its precision the more information about the state of the network it has. The artificial neural network demonstrates a detection effectiveness at the level of the rest of the algorithms treated, maintaining the commitment to the processing level.

Downloads

Download data is not yet available.

References

Alves Coelho J., Glória A. and Sebastião P. (2020). "Precise Water Leak Detection Using Machine Learning and Real-Time Sensor Data". IoT, 1(2), Article 2. ISSN 474-493.

Arredondo D. J., Gil W. J. y Mora J. J. (2017). "Metodología para la selección de atributos y condiciones operativas para la localización de fallas basada en la máquina de soporte vectorial". Tecnura, 21(51), 15-26. ISSN 0123-921.

Bohorquez J., Simpson A. R., Lamber, M. F. and Alexander B. (2021). "Merging Fluid Transient Waves and Artificial Neural Networks for Burst Detection and Identification in Pipelines". Journal of Water Resources Planning and Management, 147(1), 04020097. ISSN 1943-5452.

Hernández G. (2014). "Implementación numérica de redes neuronales artificiales para el análisis de grietas en placas". Tesis de Maestría, Escuela Superior de Ingeniería Mecánica y Eléctrica, México D.F.

Huang P., Zhu N., Hou D., Chen J., Xiao Y., Yu J., Zhang G. and Zhang, H. (2018). "Real-Time Burst Detection in District Metering Areas in Water Distribution System Based on Patterns of Water Demand with Supervised Learning". Water, 10(12), Article 12. ISSN 2073-4441.

Liu Y., Ma X., Li Y., Tie Y., Zhang Y. and Gao J. (2019). "Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks". Sensors, 19(23), Article 23. ISSN 1424-8220.

Mounce S. R., Mounce R. B. and Boxall J. B. (2011). "Novelty detection for time series data analysis in water distribution systems using support vector machines". Journal of hydroinformatics, 13(4), 672-686. ISSN 1464-7141.

Rodríguez C. F., Montes E. M. y López R. R. (2021). "Generación de árboles de decisión usando un algoritmo inspirado en la Física". Tesis de Maestría en Computación Aplicada, Laboratorio Nacional de Informática Avanzada, México D.F.

Saravanan R. and Sujatha P. (2018). A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 945-949. ISBN 978-1-5386-2843-0.

Srirangarajan S., Allen M., Preis A., Iqbal M., Lim H. B. and Whittle A. J. (2013). "Wavelet-based Burst Event Detection and Localization in Water Distribution Systems". Journal of Signal Processing Systems, 72(1), 1-16. ISSN 1939-8115

Trutié-Carrero E., Valdés-Santiago D., León-Mecías Á. y Ramírez-Beltrán J. (2018). "Detección y Localización de Ruptura Súbita mediante Transformada Wavelet Discreta y Correlación Cruzada". Revista Iberoamericana de Automática e Informática Industrial, 15(2), Article 2. ISSN 1697-7912

Van Jaarsveldt C., Peters G. W., Ames M. and Chantler M. (2023). "Tutorial on Empirical Mode Decomposition: Basis Decomposition and Frequency Adaptive Graduation in Non-Stationary Time Series". IEEE Access. ISSN 2169-3536

Zaman D., Tiwari M. K., Gupta A. K. and Sen D. (2020). "A review of leakage detection strategies for pressurised pipeline in steady-state". Engineering Failure Analysis, 109, 104264. ISSN 1350-6307. https://doi.org/10.1016/j.engfailanal.2019.104264

Published

2024-09-29

How to Cite

Chiang Cruz, J. E., Vega González, I., & Ramírez Beltrán, J. (2024). State of the art of Machine Learning algorithms for burst detection . Ingeniería Hidráulica Y Ambiental, 45(2), 78–89. Retrieved from https://riha.cujae.edu.cu/index.php/riha/article/view/665

Most read articles by the same author(s)